
Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 1

Data Base and Data Mining Group of Politecnico di Torino

DB
MG

Master e-business and ICT Management

Database

SQL

A.A. 2007 / 2008

Tania Cerquitelli

2DB
MG

Supplier and part database

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY
S

P

SP

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

3DB
MG

Supplier and part database

Relational model
part base table
supplier base table
supply base table, that puts a relation between
parts and suppliers which supply parts

Primary keyPrimary key (record identifier)
part: P#
supplier: S#
supply: (S#,P#)

4DB
MG

SQL language

It is a language to define the relational
database structure and to access and update
data
It is suitable for

interactive operations
embedded instructions

a host language contains SQL instructions. These
instructions differ from host language instructions by
means of syntactic artifices

5DB
MG

SQL language

SQL is a level set language
operations and results are set of data

SQL expresses queries in declarative way
the abstraction level is higher than programming
languages
queries specify the properties of the result, not
the way to obtain it
queries are translated by the query optimizer into
the procedural language internal to the DBMS

the programmer should focus on readability, not on
efficiency

6DB
MG

SQL language

The name is an acronym for Structured Query
Language
It is a language to manage relational database

DDL (Data Definition Language) is the language
which supports the definition or declaration of
database objects (e.g., tables, indexes)
DML (Data Manipulation Language) is the
language which supports the manipulation or
processing of data

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 2

7DB
MG

Data Definition Language

CREATE TABLE: base table definition

ALTER TABLE: alteration of a base table
structure

DROP TABLE: base table deletion

CREATE INDEX: index creation

DROP INDEX: index deletion

8DB
MG

CREATE TABLE

CREATE TABLE <base-table-name>
(column-definition [,column-definition]);

column-definition::=column-name type-name [NOT NULL]

CREATE TABLE S
(S# CHAR(5) NOT NULL,
SNAME CHAR(20) NOT NULL,
STATUS SMALLINT NOT NULL,
CITY CHAR(15) NOT NULL,
PRIMARY KEY (S#)

);

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY

Example. Create the supplier base table.

9DB
MG

Definition of supplier and part database
CREATE TABLE S (S# CHAR(5) NOT NULL,

SNAME CHAR(20) NOT NULL,

STATUS SMALLINT NOT NULL,

CITY CHAR(15) NOT NULL,
PRIMARY KEY (S#));

CREATE TABLE P (P# CHAR(6) NOT NULL,

PNAME CHAR(20) NOT NULL,

COLOR CHAR(6) NOT NULL,
WEIGHT SMALLINT NOT NULL,

CITY CHAR(15) NOT NULL,

PRIMARY KEY (P#));

CREATE TABLE SP (S# CHAR(5) NOT NULL,
P# CHAR(6) NOT NULL,

QTY INTEGER NOT NULL,

PRIMARY KEY (S#,P#),

FOREIGN KEY (S#) REFERENCES S,
FOREIGN KEY (P#) REFERENCES P);

10DB
MG

ALTER TABLE

The following “alterations” are supported
A new column can be added
A new default can be defined for an existing
column (replacing the previous one, if any)
An existing column default can be deleted
An existing column can be deleted
A new integrity constraint can be specified
An existing integrity constraint can be deleted

11DB
MG

ALTER TABLE

ALTER TABLE <base-table-name>
ADD column-name data-type;

ALTER TABLE S
ADD DISCOUNT SMALLINT;

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY DISCOUNT

Example. Add the column DISCOUNT to supplier base table.

12DB
MG

DROP TABLE

DROP TABLE <base-table-name>;
indexes and views, defined on base-table-name,
are also deleted

DROP TABLE S;

Example. Delete the supplier base table.

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 3

13DB
MG

INDEXES - Creation

CREATE [UNIQUE] INDEX <index-name> ON
<base-table-name>(column-name [,column-name]);

• UNIQUE option specified than only one record can
assume a given value

Examples.
CREATE UNIQUE INDEX XS ON S (S#);
CREATE UNIQUE INDEX XP ON P (P#);
CREATE UNIQUE INDEX XSP ON SP (S#,P#);

The violation of the unique option prevents the operation

CREATE INDEX XSC ON S (CITY);
Since many records can do reference to the same city,
UNIQUE option is not specified

14DB
MG

INDEXES – Deleting

DROP INDEX index-name;

Example. Delete XSC index.

DROP INDEX XSC;

15DB
MG

Data Manipulation Language

SELECT – retrieval data (querying database)
INSERT – inserting new data
UPDATE – changing existing data
DELETE – deleting exiting data

16DB
MG

Query

SELECT [DISTINCT] column(s)
FROM table(s)
[WHERE condition]
[GROUP BY column(s)
[HAVING condition]]
[ORDER BY column(s)];

17DB
MG

Data manipulation
Example. Find the code and status relating to suppliers in Paris.

SELECT S#, STATUS
FROM S
WHERE CITY='Paris';

S# STATUS

S2
S3

10
30

Result

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY
S base table

18DB
MG

SELECT with DISTINCT

DISTINCT – Remove duplicates

P#
P1
P2
P3
P4
P5
P6

Result

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY

SP base table

SELECT DISTINCT P#
FROM SP;

Example. Find distinct supplied parts.

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 4

19DB
MG

Extraction of all information

Example. Find all the information relating to parts.

SELECT *
FROM P;

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

ResultP base table

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

SELECT P.P#, P.NAME, P.COLOR, P.WEIGHT, P.CITY
FROM P;

20DB
MG

Ordering
The ORDER BY clause, at the end of the query,
orders the rows of the result

ORDER BY Ordering-Attribute [asc|desc]
{, Ordering-Attribute [asc|desc]}

Example. Extract the content of the part base table in descending order of
name and color.

Result

Screw
Screw
Nut
Cog
Cam
Bolt

Red
Blue
Red
Red
Blue
Green

14
17
12
19
12
17

P4
P3
P1
P6
P5
P2

P# PNAME COLOR WEIGHT

London
Rome
London
London
Paris
Paris

CITY
SELECT *
FROM P
ORDER BY PNAME DESC,

COLOR DESC;

21DB
MG

ORDER BY

P#
P6
P5
P4
P3
P2
P1

ResultP base table

Example. Get p# of all parts in descending order of p#.

SELECT P#
FROM P
ORDER BY P# DESC;

DESCENDING

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

Without DESC

Implicit order is ASCENDING

22DB
MG

Search with Ordering (1)

Example. Find all the information relating to parts. The result needs
to be ordered in descending order of weight and ascending order of
name.

SELECT P#, PNAME, COLOR, WEIGHT, CITY
FROM P
ORDER BY WEIGHT DESC, PNAME;

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

P base table

Cog
Bolt
Screw
Screw
Cam
Hut

Red
Green
Blue
Red
Blue
Red

19
17
17
14
12
12

P6
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

Result

23DB
MG

Search with Ordering (2)

Example. For each part find p# and weight expressed in gram. Order
the result based on weight expressed in gram.

SELECT P#, WEIGHT*454 AS PESO
FROM P
ORDER BY PESO;

P# PESO

P1 5448
P5 5448
P4 6356
P2 7718
P3 7718
P6 8626

Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

ResultP base table

24DB
MG

SELECT S#
FROM S
WHERE CITY='Paris‘ AND STATUS>20;

S#

S3

Example. Find s# relating to suppliers in Paris with status greater than 20.

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY
S base table

Result

Qualified search (Predicate conjunction)

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 5

25DB
MG

SELECT S#, STATUS
FROM S
WHERE CITY='Paris'
ORDER BY STATUS DESC;

Queries (1)

1. Find s# and status relating to suppliers in Paris. Order the
result with respect to status.

2. Find s# and status relating to suppliers in Paris or in London.

SELECT S#, STATUS
FROM S
WHERE CITY=‘Paris’ OR CITY=‘London’;

26DB
MG

SELECT S#, STATUS
FROM S
WHERE CITY<>'Paris‘;

Queries (2)

3. Find s# and status relating to suppliers without buildings
in Paris.

27DB
MG

Query with JOIN
This type of query searches a set of data in two or more base tables
It performs a cartesian product of a set of base tables listed
The result table is composed by all possible rows r, where r is obtained
linking together one row of the first table, one for the second, … , one of
the last table
All rows, which do not satisfy conditions expressed in WHERE, are
removed from the result table

SELECT SNAME
FROM S, SP
WHERE S.S#=SP.S# and P#=‘P2’;

Example. Find the name of suppliers which supply the P2 part

Join condition

28DB
MG

Query with JOIN

Example. Find names of suppliers which supply at least a red part

SELECT SNAME
FROM S, SP, P
WHERE S.S#=SP.S# AND P.P#=SP.P#
AND P. Color=‘red’;

If in the FROM clause there
are N base tables At least N-1 Join Conditions

DISTINCT is necessary to remove duplicate

29DB
MG

Query with JOIN

Example. Find the pairs of s# relating to suppliers with building in the
same city.

SELECT SX.S#, SY.S#
FROM S AS SX, S AS SY
WHERE SX.CITY=SY.CITY AND SX.S#<>SY.S# ;

SX. S# SY.S#

S1 S1
S1 S4
S2 S2
S2 S3
S3 S2
S3 S3
S4 S1

SX. S# SY.S#

S1 S1
S1 S4
S2 S2
S2 S3
S3 S2
S3 S3
S4 S1

Result (a)

Result (b)

30DB
MG

Aggregate function

The result of an aggregate query depends
on the consideration of sets of rows
SQL-2 offers five aggregate operators

COUNT – counts elements of a column
SUM – sums values of a column
AVG – value average of a column
MAX – maximum value in a column
MIN – minimum value in a column

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 6

31DB
MG

Operator COUNT

COUNT returns the number of rows or
distinct values

Function argument may be preceded by
DISTINCT
COUNT(*) counts the number of base
table rows

COUNT (<*| distinct | all Attribute-List>)

32DB
MG

Operator COUNT
1. Get the number of rows of S base table.

SELECT COUNT(*)
FROM S;

2. Get the number of suppliers which provide at least one supply.

SELECT COUNT(DISTINCT S#)
FROM SP;

3. Get the number of suppliers which supply the P2 part.

SELECT COUNT(*)
FROM SP
WHERE P#='P2';

4. Get the total number of supplied parts relating to P2 part.
SELECT SUM(QTY)

FROM SP
WHERE P#='P2‘;

33DB
MG

SUM, AVERAGE, MAXIMUN, MINIMUM

SUM and AVG are applied on numeric
values
Function argument may be preceded by
DISTINCT

< SUM | MAX | MIN | AVG >
([distinct | all] Attribute-Expression>)

34DB
MG

AVG, SUM, MAXIMUN, MINIMUM

Find the average quantity of all supplied
parts.

SELECT AVG(QTY) as AvgQ
FROM SP;

Find the total quantity of all supplied parts.
SELECT SUM(QTY) as TotQ
FROM SP;

Find the maximum and the minimum weight
of all parts.

SELECT MAX(WEIGHT) as MaxW,
MIN(WEIGHT) as MinW

FROM P;

35DB
MG

GROUP BY queries

SELECT P#, SUM(QTY)
FROM SP

GROUP BY P#;

P#

P1
P2
P3
P4
P5
P6

....

600
1000
400
500
500
100

Result
S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY

SP base table

S1
S2
S1
S2
S3
S4
S1
S1
S4
S1
S4
S1

S#

P1
P1
P2
P2
P2
P2
P3
P4
P4
P5
P5
P6

P#

300
300
200
400
200
200
400
200
300
100
400
100

QTY

Queries may apply aggregate operators to subsets of rows

Example. For each part get the total
number of supplied parts. (Find the
total supplied quantity for all supplied
parts)

36DB
MG

Group predicate: HAVING

Example. For each part, with at least
500 supplied pieces, get the total
supplied quantity.

P#

P1
P2
P4
P5

....
600
1000
500
500

Result
S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY

SP base table

S1
S2
S1
S2
S3
S4
S1
S1
S4
S1
S4
S1

S#

P1
P1
P2
P2
P2
P2
P3
P4
P4
P5
P5
P6

P#

300
300
200
400
200
200
400
200
300
100
400
100

QTY

SELECT P#, SUM(QTY)
FROM SP
GROUP BY P#

HAVING SUM(QTY)>=500;

When conditions are on the result of an aggregate operator,
it is necessary to use the HAVING clause

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 7

37DB
MG

Group predicate: HAVING

Example. Get p# supplied by more
than one supplier.

P#

P1
P2
P4
P5

Result

SELECT P#
FROM SP
GROUP BY P#
HAVING COUNT(*)>1;

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY

SP base table

S1
S2
S1
S2
S3
S4
S1
S1
S4
S1
S4
S1

S#

P1
P1
P2
P2
P2
P2
P3
P4
P4
P5
P5
P6

P#

300
300
200
400
200
200
400
200
300
100
400
100

QTY

Only predicates containing aggregate operators should
appear in the argument of the having clause
Having for the group by is like where for the table rows

38DB
MG

Exercises (1)
The following relations are given (primary keys are underlined):
JOURNAL (CodJ, NameJ, Editor)
ARTICLE (CodA, Title, Topic, CodJ)

Write the following SQL queries

(a) Find journal names which have published at least an article
based on ‘motorcycling’ topic.
(b) Find journal names which publish motorcycling articles or motor
racing articles.
(c) Find journal names which have published at least 2
motorcycling articles.
(d) Find journal names which have published a motorcycling article
(only one).

39DB
MG

Solutions (1a)

(a) SELECT DISTINCT NameJ
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ
AND Topic='motorcycling';

(b) SELECT NameJ
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ
AND (Topic='motorcycling' OR Topic=‘motor racing');

40DB
MG

Solutions (1b)
(c) SELECT NameJ

FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodR AND Topic='motorcycling‘
GROUP BY JOURNAL.CodJ, NameJ
HAVING COUNT(*)>1;

(d) SELECT NameJ
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ AND Topic='motorcycling'
GROUP BY JOURNAL.CodJ, NameJ
HAVING COUNT(*)=1

41DB
MG

Exercises (2)
The following relations are given (primary keys are underlined):
JOURNAL (CodJ, NameJ, Editor)
ARTICLE (CodA, Title, Topic, CodJ)

Write the following SQL queries

(a) Find editors which have published at least an article based on
‘motorcycling’ topic.
(b) Find editors which publish motorcycling articles or motor racing
articles.
(c) Find editors which have published at least 2 motorcycling
articles.
(d) Find editors which have published a motorcycling article (only
one).

42DB
MG

Solutions (2a)

(a) SELECT DISTINCT Editor
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ
AND Topic='motorcycling';

(b) SELECT DISTINCT Editor
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ
AND (Topic='motorcycling' OR Topic=‘motor racing');

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 8

43DB
MG

Solutions (2b)
(c) SELECT Editor

FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ AND Topic='motorcycling‘
GROUP BY Editor
HAVING COUNT(*)>1;

(d) SELECT Editore
FROM JOURNAL, ARTICLE
WHERE JOURNAL.CodJ=ARTICLE.CodJ AND Topic='motorcycling'
GROUP BY Editor
HAVING COUNT(*)=1

44DB
MG

Verbatim search
It is performed by means of LIKE constructor

column-name LIKE char-string-const
_ means any characters
% means any sequence of n characters

Example. Find all the information
relating to parts whose name starts
with c.

SELECT P.*
FROM P
WHERE P.PNAME LIKE 'c%';

P# PNAME COLOR WEIGHT CITY
P5
P6

Cam
Cog

Blue
Red

12
19

Paris
London

Result
Nut
Bolt
Screw
Screw
Cam
Cog

Red
Green
Blue
Red
Blue
Red

12
17
17
14
12
19

P1
P2
P3
P4
P5
P6

P# PNAME COLOR WEIGHT

London
Paris
Rome
London
Paris
London

CITY

P base table

45DB
MG

Verbatim search

ADDRESS contains the 'Berkeley‘ string
ADDRESS LIKE '%Berkeley%'

S# is exactly of 3 characters and the first one is 'S'
S# LIKE 'S_ _'

PNAME is longer or equal to 4 characters and the last
fourth is 'c'

PNAME LIKE '%c_ _ _’
CITY does not contain 'E'

CITY NOT LIKE '%E%'

46DB
MG

Nested queries

It is a query nested in an other query
It is introduced by the IN predicate
Internal query is executed before than the

external query

Example. Find supplier names which supply P2 part.

SELECT SNAME
FROM S
WHERE S# IN (SELECT S#

FROM SP
WHERE P#='P2');

SNAME

Smith
Jones
Blake
Clark

Result

Membership
operator

47DB
MG

Nested queries

The last query is equivalent to the following
join

SELECT S.SNAME
FROM S,SP
WHERE S.S#=SP.S# AND SP.P#='P2‘;

For the example database, it is possible to
write the query using a predefined set of data

SELECT SNAME
FROM S
WHERE S# IN ('S1','S2','S3','S4');

48DB
MG

Nested queries

Example. Find supplier names which supply at least a red part.

SELECT SNAME
FROM S
WHERE S# IN (SELECT S#

FROM SP
WHERE P# IN (SELECT P#

FROM P
WHERE COLOR='Red'));

SNAME
Smith
Jones
Clark

Result

Codes of
red

products

Codes of
suppliers of
red parts

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 9

49DB
MG

Nested queries
Example. Find codes of suppliers which work in the same city of 'S1'.

SELECT S#
FROM S

WHERE CITY = (SELECT CITY
FROM S
WHERE S#='S1');

If we know that the returned value is only one, it is possible
to use = or > ... instead of IN.

S#
S1
S4

Result

50DB
MG

Nested query
Example. Find s# of all suppliers which have status value smaller than the
maximum status stored in the supplier base table.

SELECT S#
FROM S

WHERE STATUS < (SELECT MAX(STATUS)
FROM S);

S#

S1
S2
S4

Result

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY
S base table

51DB
MG

Query with EXISTS
Example. Find the name of suppliers which supply the `P2’ part.

SELECT SNAME
FROM S

WHERE EXISTS (SELECT *
FROM SP

WHERE S# = S.S# AND P# = 'P2');

EXISTS expression (SELECT * FROM ...) is
true if and only if the result of the SELECT is
different from empty set.

52DB
MG

Query with NOT EXISTS
Example. Find the name of suppliers which do not supply the `P2’ part.

SELECT SNAME
FROM S
WHERE NOT EXISTS (SELECT *

FROM SP
WHERE S# = S.S# AND P# = 'P2');

SNAME
Adams

Result

S1
S2
S3
S4
S5

Smith
Jones
Blake
Clark
Adams

20
10
30
20
30

London
Paris
Paris
London
Athens

S# SNAME STATUS CITY
S base table

S1
S1
S1
S1
S1
S1
S2
S2
S3
S4
S4
S4

S#

P1
P2
P3
P4
P5
P6
P1
P2
P2
P2
P4
P5

P#

300
200
400
200
100
100
300
400
200
200
300
400

QTY

SP base table

53DB
MG

Query with NOT IN
Example. Find the name of suppliers which do not supply the `P2’ part.

SELECT SNAME
FROM S
WHERE S# NOT IN (SELECT S#

FROM SP
WHERE P# = 'P2');

54DB
MG

Query with NOT EXISTS

Example. Find the name of suppliers with supply all parts.

SELECT SNAME
FROM S
WHERE NOT EXISTS (SELECT *

FROM P
WHERE NOT EXISTS (SELECT *

FROM SP
WHERE S# =S.S#
AND P# = P.P#));

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 10

55DB
MG

Query with NOT EXISTS
Example. Find the code of suppliers which supply at least all parts supplied

by S2.

The search can be divided into steps
Find all the part codes supplied by the S2 supplier

SELECT P#
FROM SP
WHERE S# = 'S2';

With CREATE TABLE and INSERT it is possible to
save such data into a TEMP base table
Next, we search all the suppliers which supply
such parts

56DB
MG

Query with NOT EXISTS

Example. Find the code of suppliers which supply at least all the product supplied
by S2.

SELECT DISTINCT S#
FROM SP SPX
WHERE NOT EXISTS (SELECT *

FROM TEMP
WHERE NOT EXISTS (SELECT *

FROM SP SPY
WHERE SPY.S# = SPX.S#
AND SPY.P# = TEMP.P#));

57DB
MG

Query with UNION

Given two sets A and B
A UNION B

is the set of objects such that
if x belongs to A or belongs to B or belongs to
both sets
x belongs to (A UNION B)
duplicates are deleted

58DB
MG

Query with UNION
Example. Find the code of parts which weight more than 16 or are supplied by S2
supplier, or both events are true.

SELECT P#
FROM P
WHERE WEIGHT > 16

UNION

SELECT P#
FROM SP
WHERE S# = 'S2';

59DB
MG

UPDATE

UPDATE table-name
SET column = expression

[, column = expression]
[WHERE condition];

All table records in table-name, which satisfy the
condition, are updated according to the column =
expression in the SET clause

60DB
MG

Updating of a single record

UPDATE P
SET COLOR = 'Yellow' , WEIGHT=WEIGHT+12, CITY = NULL,

WHERE P# = 'P1';

The updating is executed only for the record
associated to P1 code

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 11

61DB
MG

Multiple Updating
Example. Update the status of all suppliers in London to double of their
current status.

UPDATE S
SET STATUS = 2 * STATUS
WHERE CITY = 'London‘

The updating is executed for all records
which satisfy the specified condition

62DB
MG

Updating with nested query
Example. Set to 0 the quantity supplied by all suppliers in London.

UPDATE SP
SET QTY = 0
WHERE 'London'= (SELECT CITY

FROM S
WHERE S.S# = SP.S#);

63DB
MG

Updating of many tables
Example. Update the code of S2 and S9 suppliers.

UPDATE S
SET S# = 'S9'

WHERE S# = 'S2';
UPDATE SP

SET S# = 'S9'
WHERE S# = 'S2';

An UPDATE instruction can update only a table
There is an integrity problem after the updating of supplier
base table
To guarantee the integrity it is necessary to perform the
updating of both tables

64DB
MG

DELETE instruction

DELETE FROM table-name
[WHERE condition];

All records which satisfy the condition are deleted
from table-name

Example. Delete all supplies.

DELETE FROM SP;

SP base table has been emptied

65DB
MG

Record deleting
Example. Delete the record corresponding to S1 supplier.

DELETE FROM S
WHERE S# = 'S1';

ATTENTION: if SP base table contains reference to
S1, the database looses its integrity

Example. Delete all suppliers in Madrid.

DELETE FROM S
WHERE CITY = 'Madrid';

66DB
MG

Deleting with nested query

Example. Delete all sales by suppliers in London.

DELETE FROM SP
WHERE 'London'= (SELECT CITY

FROM S
WHERE S.S# = SP.S#);

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 12

67DB
MG

INSERT instruction

Two cases:

INSERT INTO table-name
[(column [,column]...)]
VALUES (constant [, constant] ...)

INSERT INTO table-name
[(column [,column] ...)]
SELECT ... FROM ... WHERE ... ;

68DB
MG

INSERT INTO P (P#, CITY, WEIGHT)
VALUES ('P7', 'Athens', 24);

A new record is build for P7 part
NAME and COLOR are initialized to NULL (Attention to
CREATE TABLE statement)

Inserting of only one record

69DB
MG

Inserting of only one record
Example. Insert P8 part (name: Sprocket, color: Pink, Weight: 12, city: Nice).

INSERT INTO P
VALUES ('P8','Sprocket','Pink',12,'Nice');

When attribute list is omitted, the statement is equivalent
to specify all the attributes according to the creation order
of columns in the base table

70DB
MG

Inserting of only one record
Example. Insert a new supply with S20 supplier, P20 part and quantity
equal to 1000.

INSERT INTO SP (S#, P#, QTY)
VALUES ('S20','P20',1000);

ATTENTION: it is necessary than P20 and S20 exist in S
and P respectively (integrity problem)

71DB
MG

Inserting of many records
Example. For each part find the code and the corresponding supplied quantity,
saving the result into the database.

CREATE TABLE TEMP
(P# CHAR(6),
TOTQTY INTEGER);

INSERT INTO TEMP (P#, TOTQTY)
(SELECT P#, SUM(QTY) FROM SP
GROUP BY P#);

72DB
MG

Inserting of many records

SELECT returns data which are immediately
inserted into TEMP base table
TEMP base table is available for next
elaborations
At the end TEMP table can be deleted

DROP TABLE TEMP ;

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 13

73DB
MG

Integrity constraints in SQL-92

Constraints are conditions that must be
verified by every database instance

Intra-relational constraints
Inter-relational constraints
Assertions

74DB
MG

Intra-relational constraints

Intra-relational constraints involve a single
relation

not null (on single attributes)
unique: permits the definition of keys

for single attributes
unique, after the domain

for multiple attributes
unique (Attribute {, Attribute })

primary key: defines the primary key (once for
each table; implies not null)
check

75DB
MG

Example of intra-relational constraints

Each pair of S# and P# uniquely identifies
each supply

S# CHAR(6)
P# CHAR(6)
unique(S#,P#)

Note the difference with the following
(stricter) definition which can be used in base
tables S and P

S# char(6) not null unique
P# char(6) not null unique

76DB
MG

Check clause

It can be used to express arbitrary constraints
during schema definition
Check (Condition)
Condition is what can appear in a where clause
(including nested queries)

CREATE TABLE SP (
S# CHAR(6) NOT NULL,
P# CHAR(6) NOT NULL,
QTY INTEGER

CHECK(QTY IS NOT NULL AND QTY>0),
PRIMARY KEY (S#,P#));

77DB
MG

Inter-relational constraints

Constraints may take into account several
relations

references and foreign key permit the definition
of referential integrity constraints

for single attributes
references after the domain

for multiple attributes
foreign key (Attribute {, Attribute })
references …

It is possible to associate reaction policies to
violations of referential integrity

78DB
MG

Reaction policies
Reactions operate on the internal table, after changes to the
external table
Violations may be introduced by

updates on the referred attribute
row deletions

Reactions
cascade: propagate the change
set null: nullify the referring attribute
set default: assign the default value to the referring attribute
no action: forbid the change on the external table

Reactions may depend on the event
on < delete | update >

< cascade | set null | set default | no action >

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 14

79DB
MG

Example of inter-relational constraint

CREATE TABLE SP (
S# CHAR(6) NOT NULL,
P# CHAR(6) NOT NULL,
QTY INTEGER

CHECK(QTY IS NOT NULL AND QTY > 0),
PRIMARY KEY (S#,P#),
FOREIGN KEY (S#) REFERENCES S(S#)

ON DELETE NO ACTION
ON UPDATE CASCADE,

FOREIGN KEY(P#) REFERENCES P(P#)
ON DELETE NO ACTION
ON UPDATE CASCADE);

80DB
MG

Assertions

Assertions permit the definition of constraints
outside of table definitions
Useful in many situations (e.g., to express
generic inter relational constraints)
An assertion associates a name to a check
clause

create assertion AssertionName check (Condition)

81DB
MG

Example of Assertion

Constraint: each part can be supplied by at
most 10 different suppliers

CREATE ASSERTION TooManyS
CHECK (NOT EXISTS

(SELECT * FROM SP
GROUP BY P#
HAVING COUNT(DISTINCT S#)>10))

DEFERRABLE
INITIALLY DEFERRED;

82DB
MG

Transactional System

A system capable of providing
the definition and execution of transactions on
behalf of multiple
concurrent applications

83DB
MG

Transactions

An elementary unit of work performed by an
application, with specific features for what concerns
correctness, robustness and isolation
Each transaction is encapsulated within two
commands

begin transaction (bot)
end transaction (eot)

Within a transaction, one of the commands below is
executed (exactly once)

commit work (commit)
rollback work (abort)

84DB
MG

ACID Properties of Transactions (1)
Atomicity

A transaction is an atomic unit of work
It cannot leave the database in an intermediate state

a fault or error prior to commit causes the UNDO of the work made
earlier
A fault or error after the commit may require the REDO of the work made
earlier, if its effect on the database state is not guaranteed

Consistency
Consistency amounts to requiring that the transaction does not
violate any integrity constraint
Integrity constraint verification can be

Immediate: during the transaction (the operation causing the violation is
rejected)
Deferred: at the end of the transaction (if some integrity constraint is
violated, the entire transaction is rejected)

Master e-business and
ICT Management Database - SQL

Tania Cerquitelli Pag. 15

85DB
MG

ACID Properties of Transactions (2)

Isolation
Isolation requires that any transaction executes
independently from the execution of all other concurrent
transactions [isolation requires that the concurrent
execution of a collection of transaction yields to the same
result as an arbitrary sequential execution of the same
transactions]

Durability (Persistence)
Durability requires that the effect of a transaction that has
successfully committed be not lost (the effect will “last
forever”)

